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STRUCTURE ENUMERATION AND SAMPLING

MARKUS MERINGER

To appear in Handbook of Chemoinformatics Algorithms

Chemical structure enumeration and sampling have been studied by
mathematicians, computer scientists and chemists for quite a long time.
Given a molecular formula plus, optionally, a list of structural con-
straints, the typical questions are: (1) How many isomers exist? (2)
Which are they? And, especially if (2) cannot be answered completely:
(3) How to get a sample?

In this chapter we describe algorithms for solving these problems.
The techniques are based on the representation of chemical compounds
as molecular graphs (see Chapter 2), i.e. they are mainly applied to
constitutional isomers. The major problem is that in silico molecular
graphs have to be represented as labeled structures, while in chemical
compounds, the atoms are not labeled. The mathematical concept
for approaching this problem is to consider orbits of labeled molecular
graphs under the operation of the symmetric group. We have to solve
the so—called isomorphism problem.

According to our introductory questions, we distinguish several dis-
ciplines: counting, enumerating and sampling isomers. While counting
only delivers the number of isomers, the remaining disciplines refer to
constructive methods. Enumeration typically encompasses exhaustive
and non-redundant methods, while sampling typically lacks these char-
acteristics. However, sampling methods are sometimes better suited to
solve real-world problems.

There is a wide range of applications where counting, enumeration
and sampling techniques are helpful or even essential. Some of these
applications are closely linked to other chapters of this book. Counting
techniques deliver pure chemical information, they can help to estimate
or even determine sizes of chemical databases or compound libraries
obtained from combinatorial chemistry.

Constructive methods are essential to structure elucidation systems,
see Chapter 9. They are used to generate structures that fulfill struc-
tural restrictions obtained from spectroscopy in a pre-generation step,
while in a post—generation step virtual spectra of the generated struc-
tures can be computed and compared with the measured data in order
to determine, which of them achieves the best fit.

Date: submitted September 10, 2008; revised January 25, 2009 and April 13,
2009.



40

45

50

55

60

65

70

75

2 MARKUS MERINGER

Other applications use structure enumeration algorithms in order
to produce candidate structures for virtual screening, see Chapter 5.
Structure—activity and structure—property relationships, as introduced
in Chapter 6, can be used in combination with structure enumeration
or sampling as rudimentary approaches towards inverse QSAR (see
Chapter 10) and de novo design algorithms often have their roots in
conventional structure generation.

The non-quantitative aspects of reaction network generation (Chap-
ter 11) are also based on methods similar to those used for isomer
enumeration.

1. ISOMER COUNTING

Counting means that only the number of structures is calculated, the
structures themselves are not produced by the algorithm. The most
powerful counting technique available to chemists is Pélya’s theorem
[1], see also [2, 3]. There are, of course, various predecessors, e.g. a
paper by Lunn and Senior [4], who were the first to note that group
theory plays a role, and a paper by Redfield [5] that contained even
better results. However, Pélya’s paper gave rise to the development
of a whole theory that is nowadays called Pélya’s Theory of Counting.
Typical applications are counting of permutational isomers and acyclic
compounds.

1.1. Counting permutational isomers. Podlya’s approach to the enu-
meration of molecules with a given molecular formula is to subdivide
the molecule in question into a skeleton and a set of univalent sub-
stituents. It leads to the following challenge: Evaluate the set of es-
sentially different distributions of the substituents over the sites of the
skeleton with respect to the given symmetry group of the skeleton.

In mathematical terms, the symmetry group G acts on the set of
mappings m” from the n sites of the skeleton onto the m available
substituents. The set of orbits under this group operation, m"//G, is
in one to one relation with the different constitutions.

If the skeleton shows no symmetries, i.e. if G is of order 1, then it is
clear that there are m"™ different substitutions. Note, that m™ has two
different meanings, once for denoting the set of mappings and once for
its cardinality. If the order of G is larger than 1, the situation is more
interesting.

The resulting isomers are called permutational or substitutional iso-
mers. For example the 22 permutational isomers of dioxin (tetrachloro-
dibenzo-p-dioxin) are the essentially different distributions of four hy-
drogen and four chlorine atoms over the eight sites of the skeleton
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depicted on the left:

Counting these isomers is described in detail in Kerber’s comprehensive
book [6] on finite group actions. In this section we will discuss the
example of permutational isomers of dichlorobenzene, which are based
on the benzene skeleton sketched on the right.

First we will try to describe Pélya’s approach in general. The sym-
metry group G of the skeleton with respect to the n binding sites is
required as input. The procedure works with the topological symme-
try group as well as with the geometrical symmetry group. Of course,
the results might differ. For ways to compute a molecule’s symmetry
group see Chapter 2. A suitable data structure for representing groups
is described by Sims [7].

The reader should be familiar with the cycle notation of permuta-
tions, which is briefly described in Example 1.2 below. At this point, it
is useful to know that every permutation has a unique decomposition
into disjoint cycles. For more details on permutations and cycles, the
reader is referred to [6].

The cycle index of a permutation g € GG is a monomial in variables
2. 1t is defined as

(L1) Z(g) = [[ 2@,
k=1

where ¢x(g) is the number of cycles of g having length k. The cycle
index Z(G) of GG is the averaged sum of cycle indices of group elements:

(1.2) 2(Q) = %lznzk%(g)_

g€G k=1

In order to obtain a counting series from the cycle index, a so-called
generating function has to be inserted. Having m > 1 different chemical
elements to choose from, a suitable generating function is y; + ... + Y.
Inserting the generation function into the cycle index means that every
occurrence of z, in Z(G) is replaced by y* + ... + k. If m = 2
the easier generation function 1 + x can be used instead, and during
insertion z; is replaced by 1 + x*. .

The coefficient of the monomial [}, y/* of the counting series equals
the number of isomers with j; substituents of type 7. In the case where
we have just two different elements to substitute, say H and Cl, the
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4 MARKUS MERINGER

coefficient of 27 equals the number of isomers with j hydrogen atoms.
To summarize, we can formulate the following

Algorithm 1.1. Counting permutational isomers by Pdlya’s theorem

(1) Calculate the cycle index of the skeleton with respect to the
binding sites.

(2) Insert the generation function into the cycle index.

(3) Evaluate the coefficients of the counting series.

This formal description of how to solve the counting problem in
general needs to be illustrated by an example. Counting CgH4Cl, con-
stitutions with a benzene skeleton will be explained step by step.

Example 1.2. Counting isomers of dichlorobenzene
Below we see the benzene skeleton together with its symmetry axes
(1),...,(6).

@

‘@

Besides six axis reflections, the benzene skeleton allows some more
symmetry operations, namely five proper rotations. Table 1 lists all
the symmetry operations and the according permutations of benzene’s
symmetry group Dg,. E denotes the identity, C’;r /= represents a ro-
tation by 360/i degrees, where the sign describes the direction of the

rotation, and o)) represents a reflection at axis (j).

Permutations are given in two notations. The list representation
might appear more straightforward to the reader, because for a permu-
tation m the i—th component in the list simply defines the image of i,
i.e. the list representation of 7 is [w(1),...,7(n)].

The cycle notation is a little more difficult to understand, but gives
direct access to the cycle index, which is needed to compute counting
series. The cycle representation consists of 1 to n cycles, which are en-
closed by round brackets. Each cycle itself consists of 1 to n elements.
Cycles of only one element (7) show that i is fixed under the permuta-
tion, i.e. m(i) = i. Sometimes such cycles are even suppressed in cycle
notations. Cycles (i1, ...,4;) with more than one element indicate that
71 is mapped onto is, i3 is mapped onto i3 and so on. The length [ of
the cycle is determined by the minimum number of applications of 7
that map i again onto i, i.e. [ = min{h : 7(i) = i}. In particular this
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Oper- List- Cycle- Cycle-
ation || representation | representation index
b [123456] | (1)(2)3)(4)(5)(6) | «°
Ci | 234561 (1234506) Z6!
C; | 612345 (654321) 261
Cq | 345612 | (135)(246) PR
C; | 561234 | (531)(642) 232
Cy | 456123 | 1H25)(3B6) | 2°
o |l 165432 | (1)4)(26)(35) | 21222
o | 543216 | (3)(6)(15)(24) | 2222
o |l 321654 | (2)(5)(13)(46) | 21222
oD [ 654321 | (16)25)(34) | 2°
o || 432165 | 14)(23)(56) | 23
o || 216543 | (12)(36)45) | 23
TABLE 1. Permutations of the automorphism group Dy,
of benzene

means that the last element of the cycle, 4;, is mapped onto iy, and
generally the cycle of 4; can be written as (i1, m(iy), 72(i1), . .. 7 1(i1)).

Finally, the cycle indices of the elements of the automorphism group
can be derived directly from the cycle notations using Equation 1.1.
This results in the cycle index

1
Z<D6h) = 5(216 + 4223 -+ 2232 + 22’61 + 3212222)

for benzene’s automorphism group Dgj,. Inserting the generating func-
tion 1 4 x leads to the counting series

1
o (1+2)°+4(1 +2°)° +2(1 + 2%)°

+ 2(1 + 2% + 3(1 + 2)*(1 + 2%)?)
= 14+a+322+4+32%+ 32+ 2° 4+ 28

C(Dgn) =

The coefficient of 2 in the counting series indicates the number of
isomers with ¢ hydrogen and n — ¢ chlorine atoms. Thus we obtain
the number of isomers of benzene (1 isomer according to coefficient
1 of 29), chlorobenzene (1 isomer according to coefficient 1 of z!),
dichlorobenzene (3 isomers according to coefficient 3 of z*) and so on.
This sums up to 13 different substitutions of the benzene skeleton with
H and Cl. These 13 compounds are shown in Figure 1.

But note that a counting series itself gives no hint to the structures
of the counted isomers, i.e. as soon as there is more than one isomer
found, Pdélya’s theorem does not show how to attach the substituents
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cl cl cl cl cl el
: i ©/CI ©:c| cl cl cl cl
cl cl cl cl cl cl
cl cl el
cl cl cl
f cl f cl
cl cl cl
cl
cl cl cl
f cl
cl cl cl
cl cl

F1GURE 1. The 13 different substitutions of a benzene
skeleton with H and C

to the skeleton in order to obtain all isomers. For this purpose we
need constructive methods based on the principles of double cosets
developed by Ruch, Klein et al. [8, 9, 10].

Examples 1.3. Cycle indices and counting series
In the following we list cycle indices of several benzenoid hydrocarbons,
together with their counting series obtained by substituting 1 + x.
e Naphthalene: Z(Day) = 1(21® + 325%), C(x) = 1 4 2z 4 102% +
1423 + 222* + 142° + 1025 4 227 + 28.
e Anthracene: Z(Dsy) = 15(2{° + 2725 + 223), C(x) = 1+ 3z +
1522 + 3222 + 60z* + 662° + 602 + 3227 + 1528 + 329 + 21°.
e Phenanthrene: Z(Cy,) = 3(21'° + 25°), C(z) = 1+ 5z + 2522 +
6023 + 1102 4 12625 + 1102 + 6027 + 2528 + 52 + 210,
e Tetracene: Z(Dyy) = 1(212+228), C(z) = 1+3z+212? 4552+
1352* +1982° +2362% +19827 + 12528 +552° 421210 + 321 212,
e Triphenylene: Z(Dsj,) = (27 + 225 + 223), C(z) = 1+ 2z +
142 + 3823 + 90z + 1322° + 1662° + 13227 + 902° + 382° +
14210 4 2211 4 212,
We obtain the same cycle index for naphthalene as for the introductory
sample of dioxin. We see that the monomial z* has the coefficient 22,
i.e. there are 22 isomers of dioxin.

It follows from Formulas 1.1 and 1.2 that the total number of different
substitutions with respect to G can be computed as

1
(13) G = S,
] 2

where ¢(g) denotes the number of cycles of g. We will use this later in
Section 4.2 for counting constituents of combinatorial libraries, which
is closely related to counting permutational isomers.
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Van Almsick et al. [11] developed a software tool that calculates the
number of permutational isomers using Polya’s approach. Computer
algebra systems, such as commercial implementations Mathematica
and Maple, or the open source system SYMMETRICA [12] are also
able to conduct computations following Pélya’s theory, however with-
out any special adaptions to chemistry. The computation of numbers
of permutational isomers using SYMMETRICA is available online at
symmetrica.uni-bayreuth.de/perm_iso.html (accessibility checked
January 2009).

1.2. Counting isomers of acyclic structures and other com-
pound classes. Besides permutational isomers, counting series for
several other compound classes have been discovered in the past. How-
ever, in contrast to permutational isomers these cannot be produced
using a well defined algorithm. It were rather individual ideas that led
to these counting series. Counting series are known especially for the
most prominent acyclic compound classes. Most of them were derived
by applying Pdlya’s theorem in a recursive manner, i.e. counting series
themselves were used as generating functions.

Alkyl groups have the form —C Hy,,1. They can be interpreted as
rooted trees on n nodes, where the root is the carbon atom with the
free valence. Let A,(x) denote the counting series for alkyl groups
having n atoms. There is a recursive formula

(14) Ay(z) =1+ éx[An_l?’(:z:) 34,1 (2) Ay 1 (22) + 24, 1 (%)

starting with Ag(z) = 1. For n — oo the counting series for alkyl
groups is often written as

Alz) = f: Apz”
n=0

with certain coefficients calculated from the recursive Equation 1.4.
The first terms are

A(r) = Voo +20% +4a' 4827+ 17253027 +892° +2112°+ 50720+ .

Based on this recursive approach, several counting series for other
acyclic compound classes have been formulated by Read [13]:

e Primary alcohols: R — CH, — OH with an alkyl group R: zA(x)

e Secondary alcohols: R! — CH(R?) — OH with two alkyl groups
R! and R%: 12[A%(z) — 2A(x) + A(2?)).

e Tertiary alcohols: R* — C(R?)(R®) — OH with alkyl groups R*, R?
and R3: $z[A%(z) — 3A%(x) + 3A(x) A(2?) — 3A(2?) + 2A(a?)].

e Aldehydes and ketones: R! — C(= O) — R? with alkyl groups or
hydrogen atoms R and R%: 1z[A%(z) + A(2?)].

e Alkynes: R! — C = C — R? with alkyl groups or hydrogen atoms
R! and R%: 122[A%(z) + A(2?)].
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e Esters: R'— C(=0)— 0 —R? with alkyl groups R' and R®
where R! can also be a hydrogen atom: zA(x)[A(z) — 1].
Perhaps the most important counting series for acyclic compounds
is the one for alkanes, i.e. compounds with formula C,H, . It has
been determined as
a(r) = SorlAN(E) + 6A%()AG?) + 3A2(?) + BA()A(?) + 6A()

~ (A@) - AE) + 1],

and the first terms are
a(z) = 1+z+a®+2°+ 22" +32° + 525+ 927 + 182° + 352 + 75210 + ...

Other compound classes for which several counting series are known
are benzenoids and polyhex hydrocarbons. The review of Faulon et al.
[14] offers an extensive overview on these counting series and on how
they were deduced.

Although there is a counting series known for simple graphs on
n nodes, no general counting series for molecular graphs with given
molecular formula has been found yet. An approach for counting cubic
graphs is presented [15]. The relationship between cubic and molecular
graphs might not be very obvious at first sight, but will become clearer
in Subsection 2.1. Recently, another small step towards a more univer-
sal counting series was found for hydroxyl ethers [16], i.e. isomers with
molecular formula CiHyi420;.

Up till now, the only way to calculate the number of isomers belong-
ing to an arbitrary molecular formula is to use structure generators.
Structure generators not only calculate the number of isomers, but de-
liver the structures themselves as output. On the other hand, counting
series are always a good choice to prove the correctness of new struc-
ture generator results. In the next section we will get to know the
algorithmic concepts underlying past and present structure generators.

2. ISOMER ENUMERATION: DETERMINISTIC STRUCTURE
GENERATION

The construction of all constitutional isomers having the same molec-
ular formula has a long history which will and can not be reported
in detail here. Just as the representation of chemical compounds as
graphs was one of the roots of graph theory, their generation was one
of the challenges for the development of construction algorithms for
computers.

A prominent starting point is the well known DENDRAL system
[17], the development of which began already in the middle and late
sixties of the last century. DENDRAL (short for DENRric ALgorithm)
was developed for the automated structure elucidation of organic com-
pounds by mass spectrometry (MS). For that purpose DENDRAL was
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endowed with an isomer generator that was able to process structural
constraints obtained from MS (especially the molecular formula) and
from other spectroscopic methods, in particular NMR.

DENDRAL is described in many computer science books as the first
expert system. Moreover, it can be considered as one of the roots
of chemoinformatics. Interestingly, even the NASA was among the
founders of this pioneering project, with the ambitious intention to
supply future Mars missions with such software, to enable analysis and
interpretation of MS samples onboard a space probe and to broad-
cast only identified structural formulas back to earth instead of huge
GC/MS data sets.

2.1. Early cyclic and acyclic structure generators. At first, only
acyclic structures could be constructed until there was a breakthrough
in the early seventies when a decomposition of the given molecular for-
mula into those of cyclic substructures was found. Cyclic substructures
had to be combined by bridges to get molecules with the prescribed
molecular formula. All possible decompositions of this kind could be
determined by appropriate mathematical theorems prior to construct-
ing these cyclic substructures.

2.1.1. Acyclic structure generators. Henze and Blair [18] used the fact
that a unique centroid can be found in any chemical tree for the enu-
meration of alkanes as early as the 1930’s. The unique centroid is the
starting point for a canonical labeling of the tree, following simple rules
of precedence of the constituent radicals according to their composi-
tion and topological structure. An unambiguous notational system was
established by Lederberg [19].

However, the existence of a unique (bi)centroid in a tree on n nodes
had already been formulated a century earlier in Jordan’s theorem [20]:

e For odd n = 2k + 1, there exists a unique node, called centroid,
such that all incident subtrees have at most £ nodes.
e For even n = 2k there exists either
— a unique node such that all incident subtrees have less than
k nodes, or
— a unique edge, called bicentroid or centroid edge, such that
the incident subtrees have exactly k nodes.

This theorem shows a recursive way to generate trees. A tree on
n = 2k + 1 nodes is composed from one node (the centroid, having
degree d) and d rooted trees with less than k nodes in such a way
that the sum of nodes is n — 1. In terms of acyclic chemical graphs
(without multiple bonds) one will have to loop over all different atoms
as centroid, partition the remaining atoms into subsets according to
the centroid’s valency, and then iterate this procedure on the subsets
(with the small difference that now rooted trees have to be built). The
iteration ends when no more partitioning is possible. The case of odd
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numbers of nodes can be processed similarly, with the variation that
two atoms have to be chosen for a bicentroid. Reference [21] offers
pseudo code for such an algorithm applied to alkanes.

An implementation with respect to general chemical trees was part
of the DENDRAL system. Results of this acyclic generator have been
published in [22].

2.1.2. Clyclic structure generator. Approaching the challenge of cyclic
structures, Lederberg introduced a series of simplification steps that
finally (apart from certain exceptions) showed a mapping from cyclic
structures on certain classes of cubic graphs [23].

These initial ideas developed into a structure generator described by
Masinter et al. [24, 25|, which was the first generator that covered both
acyclic and cyclic structures. The fundamental ideas of this structure
generator will be described below. First, some terminology is required.

Chapter 2 introduced molecular graphs as representations of chemi-
cal compounds. In Figure 2 we see such a representation 1 of a substi-
tuted piperazine. The chemical graph 2 ignores hydrogen. The symbol
U is used in the composition to denote the number of unsaturations.
The number of unsaturations u is computed from the molecular formula
as follows:

(2.1) u = % (2 + Z(Z — 2)6%') ;

where a; denotes the number of atoms of valence ¢ and k is the maxi-
mum valence of the composition.

An atom of a chemical graph is called cyclic, if it lies on a cycle
(or ring); otherwise it is called acyclic. This way a chemical graph
can be separated into cyclic and acyclic parts. Connected components
of the chemical graph induced by the cyclic atoms are called super-
atoms. Graph—theoretically, a superatom is a connected isthmus—free
multigraph (short cif-graph), i.e. with no edge whose deletion would
disconnect the graph. The number of free valences of the superatom is
determined by the number of connections to atoms outside the super-
atom. The chemical graph 2 is composed of the superatom 3, having
16 free valencies, and two acyclic carbon atoms.

The ciliated skeleton 4 is obtained from 3 by stripping the element
symbols. A further step of abstraction is the deletion of free valences,
resulting in the cyclic skeleton 5. Finally, if chains of bivalent nodes
are reduced to edges we obtain the vertex graph 6.

Going into the reverse direction, starting from 6, two alternative
cyclic graphs that can be obtained are 7 and 8. 9 and 10 are alternative
cilitated skeletons that can be built from 5.
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FIGURE 2. Examples of abstraction and refinement
steps used in generation of cyclic structures

In this particular example, the valencies of nodes in 9 and 10 allow
only unique superatoms 11 and 12, respectively. If, for instance, 4—
valent sulfur or 3—valent phosphorus would also be part of the composi-
tion, more than one superatom per ciliated skeleton would be possible.

The scheme of abstraction and specification steps between molecular
graphs and vertex graphs above described indicates already a strategy
for a generation algorithm, roughly following the Divide and Conquer
principle. The algorithm consists of a sequence of partitioning steps
starting from the set of atoms defined by a molecular formula that
leads to the selection of vertex graphs from a catalog. A sequence of
consecutive labeling steps finally reconstructs all molecular graphs that
arise from a vertex graph. A more detailed description of the algorithm
as outlined in [25] reads as follows:
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Algorithm 2.1. DENDRAL Isomer Generation

(1) Determine all distinct allowable partitions of a given degree
sequence V' into atoms and superatom sets with assigned free
valences. These partitions are based on the unsaturation of V.

(2) For each superatom set, determine all the distinct allowable
allocations of the free valences to the atoms of the set.

(3) For each such free valence allocation, determine recursively the
allowable sets of atoms remaining after the deletion of the bi-
valent atoms and the pruning of any resulting loops. This re-
cursion is done until:

(a) the remaining bivalent atoms in any cif-graph based on the
set must all be on edges, or
(b) one of two special cases is encountered.

(4) For each such set of atoms, if condition (a) terminates the re-
cursion, look up in the catalog all the cif-graphs based on the
nonbivalent atoms in the set and for each such graph, label the
edges with the bivalent atoms. If condition (b) terminates the
recursion, directly write down the allowable graphs.

(5) For each such graph, recursively label the atoms with loops and
the loops and edges with bivalent atoms.

(6) For each graph so obtained, label the atoms with the free va-
lences.

(7) For each set of atoms and superatoms obtained as above, use the
tree generator to construct all the non—-isomorphic connected
multigraphs based on these atoms and superatoms.

This algorithm uses several subroutines which cannot be described
in detail here. The superatom partitioner (Step 1), the free valence
partitioner (2), the loop-bivalent partitioner (3) with the definition of
the special cases (b), the look-up routine from the catalog (4), the
loop—bivalent labeler (5) and the free—valence labeler are subject to [25]
and the references cited therein. Especially for the labeling steps, see
26, 27, 28].

Example 2.2. Superatom partitioner

Step (1) of Algorithm 2.1 will be illustrated here. Table 2 shows the
results of the superatom partitioner for CgHg. Firstly, hydrogens are
replaced by unsaturations U. According to Equation 2.1, CgHg has
u = 3 unsaturations. A total of eleven allowed partitions of up to three
superatoms are obtained.

According to the terminology introduced in Figure 2, the results of
Step (5) are cyclic graphs, at Step (6) cilitated skeletons are obtained,
and Step (7) delivers chemical graphs. Step (7) is also described in [24].
However, some words on the treatment of superatoms are appropriate.

In the final step, superatoms require some special treatment in the
tree generator. If a superatom A has k free valences, then in forming
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Parti- || Super- Superatompot | Remain-
tion | atompots| 1 | 2 | 3 | ingpot
1 1 CoUs
2 1 CsU3 C
3 1 C4U3 G,
4 1 C3 U3 C3
5 2 C4 U2 C2 U
6 2 CU, | QU C
7 2 C2 U2 C2 U C2
8 2 CU | GU,
9 2 GU | GU, C
10 2 C3 U2 C3 U
11 3 CGU | GU | GU

TABLE 2. Allowed partitions of CgUs into superatom
pots and remaining pot

molecular structures which include A, A behaves differently from an
atom of valence k. The difference in forming structures including A
and those including an atom of valence k is the following: the k free
valences on an atom of valence k are, as edge endpoints in a graph,
indistinguishable, i.e. the free valences on the atom admit as symmetry
group the group Si, the full permutation group on k objects. However,
the k free valences on the superatom A are usually distinguishable from
a symmetry viewpoint, so the free valences on A will, in general, admit
only a subgroup of Sj.

The structure generator outlined here has become popular under
the name CONGEN (short for CONstained GENerator) and was used
within the DENDRAL project until it was finally replaced by the ad-
vanced generator GENOA [29] (short for GENeration with Overlapping
Atoms).

From today’s point of view it is remarkable that a project like DEN-
DRAL could be successfully realized. Computers were slow at that
time and extremely limited in memory. Programming languages were
still on a low level and software engineering was hardly recognized as
a new technological discipline. However, mathematically it was state-
of-the-art. But the various partitioning and labeling steps implicate
a problem: it is difficult to process structural constraints efficiently.
Efficiency means, that constraints can already be tested during struc-
ture generation, help to reduce intermediate results and speed up the
enumeration process. Among others, this feature will be subject of the
next subsection.
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2.2. Orderly generation. There was a development by Read [30] and
Faradzev [31, 32] who both presented the technique of orderly genera-
tion independently in 1978. In this technique an artificial ordering is
imposed on the set of graphs that are to be generated, such that the
smallest representative of a given isomorphism type always contains a
subgraph that is the smallest representative of its isomorphism type.
Thus, only smallest representatives have to be extended and the results
have to be tested for being smallest again.

This approach allowed avoidance of pairwise isomorphism testing and
keeping long lists of graphs in memory for comparison. An advantage
compared with the DENDRAL generators is that orderly generation
does not require any catalog of elemental graphs.

2.2.1. Enumerating labeled graphs. The principles underlying orderly
generation are best explained using simple graphs. Let v and «' be
simple graphs on n nodes. Nodes are labeled with numbers from 1 to
n. There is an order on edges of such graphs defined as follows: for
edges e = (z,y), ¢ = (2/,y) with z < y, ' < ¢/, e is less than ¢/, if
and only if x < 2/, or x = 2/ and y < /. This can be expressed more
precisely in mathematical terms:

e<eée = x<a V (x=2" Ny<y).

This induces a lexicographical order on the set of graphs on n nodes.
Let ey, ...,e; be the edges of v and €], ..., e, those of 7’ sorted in the
above order, i.e. e; < ... < e and €] < ... < e},. Then 7 is less than
7', if and only if there exists an index i with e; < ¢} and e; = €’; for all
J<i,ort<t ande; = ¢} for all j <t. Again, this can be expressed
more conveniently using mathematical notation:

y<v = (Fi<min{t,t'}:e; <eg AV <i:ej=e¢))

V(t<t'AVj<t:ej=¢)).

As a first application, this order shows a way to construct labeled
structures. We can define an algorithm that constructs labeled simple
graphs according to this order.

Algorithm 2.3. Labeled Enumeration (7y)
(1) Output ~
(2) For each edge e > max{e’ € v} do in ascending order of e
Call Labeled Enumeration (U {e})

Example 2.4. Labeled graphs on three nodes

Let us have a brief look at the minimalistic example of n = 3 nodes.
Figure 3 shows the way edges are inserted during recursive calls of
Labeled Enumeration. During the first call with the empty graph {}
edges (1,2), (1,3) and (2, 3) are used for augmentation. In the second
call with graph {(1,2)} as the argument, edges (1,3) and (2,3) are
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|

(2,3)

FIGURE 3. Generating tree for labeled graphs on three nodes

considered, and so on. Thus graphs are written to the output in the
following order:

{1, {(1,2)}, {(1,2),(1,3)}, {(1,2),(1,3),(2,3)}, {(1,2),(2,3)},
{(13)}, {(1,3),(2,3)}, {(2,3)}-
It is easy to check that this is the lexicographical order as introduced
above.

2.2.2. Enumerating unlabeled graphs. Beyond the construction sequence
the ordering on the set of graphs provides a canonical form. Selecting
the minimal orbit representative shows a way to avoid producing iso-
morphic duplicates. A graph + is defined canonical, if it is minimal in
its orbit. In mathematical terms:

VreS,: v<~".

Algorithm 2.3 can be upgraded to generate minimal orbit representa-
tives only by modifying Step (1):

Algorithm 2.5. Unlabeled Enumeration (7y)

(1) If v is minimal in its orbit then
Output ~v

(2) For each edge e > max{e’ € v} do in ascending order of e
Call Unlabeled Enumeration (yU {e})

However, this algorithm has to check all of the 2"(»~1)/2 labeled
graphs on n nodes for canonicity. The main finding of Read [30] and
Faradzev [31, 32] was, that every minimal orbit representative with ¢
edges has a minimal subgraph with ¢ — 1 edges. Thus, non—minimal
intermediates do not have to be considered for further augmentation.
Using this knowledge, Algorithm 2.5 can be improved to

Algorithm 2.6. Orderly Enumeration ()

(1) If v is not minimal in its orbit then
Return
(2) Output ~
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(3) For each edge e > max{e’ € v} do in ascending order of e
Call Orderly Enumeration (y U {e})

Example 2.7. Unlabeled graphs on three nodes

Continuing Example 2.4, we notice that there are four unlabeled graphs
on three nodes. They have zero to three edges. The minimal orbit
representatives are

{1 {(1.2)}, {(1,2),(1,3)}, {(1,2),(1,3),(2,3)}.
Comparing Algorithms 2.5 and 2.6, one canonicity test could be saved
using the latter: graph {(1,3)} would be recognized as non-minimal,
and its augmentation {(1,3),(2,3)} would not have to be considered.
Of course, for increasing n the improvement in Algorithm 2.6 leads to
much bigger gains in speed.

2.2.3. Introducing constraints. Typically one is not interested in enu-
merating all graphs, but just certain subsets, often denoted as classes
of graphs. Such a class of graphs is characterized by one or more con-
straint or restriction. In mathematical terms a constraint is a mapping
R from the set of graphs on n nodes onto the set of boolean values
{true, false}, which is symmetry invariant:

Vr € S, R(v)=R(").

A graph v fulfills R, if R(y) = true. Otherwise v violates the con-
straint. A constraint R is called consistent if the violation of a graph
~v to R implies that every augmentation 7’ of  violates R:

R(v) = false N yC+ = R(Y)= false.

Examples of consistent constraints are an upper number of edges, a
minimal cycle size or graph—theoretical planarity. On the other hand,
the presence or absence of a certain subgraph or a maximum ring size
are examples for inconsistent constraints (the precise definition of these
terms would require a section on its own).

Consistent constraints can be incorporated into generating algorithms
in a way that structure enumeration is accelerated. Such restrictions
can be checked after each insertion of a new edge, and help to prune
the generating tree. Inconsistent constraints are more problematic.
Testing these constraints is only useful, when a graph is completed.
Completeness itself is also described by constraints. As to generat-
ing constitutional isomers, completeness is typically defined by a given
degree sequence.

Algorithm 2.8. Orderly Enumeration with Constraints ()

(1) If v is not minimal in its orbit then
Return

(2) If v violates any consistent constraint then
Return

(3) If v fulfills all inconsistent constraints then
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Output v
(4) For each edge e > max{e’ € v} do in ascending order of e
Call Orderly Enumeration With Constraints (U {e})

2.2.4. Variations and refinements. There are several variations and re-
finements possible that might, depending on the type of constraints,
lead to a considerable speedup.

e Testing completeness is typically cheaper than other constraints
like presence and absence of substructures. Thus these more
expensive inconsistent constraints should be tested after com-
pleteness has been confirmed.

e Testing inconsistent constraints is often cheaper than testing
canonicity. Thus it can be useful to process step (2) before step
(1).

In general the sequence of tests is affected by two strategies:

e Process cheap tests first, i.e. tests that consume least compu-
tation time.

e Process selective tests first, i.e. tests that eliminate most inter-
mediates.

Those tests that fulfill both criteria should surely be processed first,
and such that fulfill none of them should be executed last. However,
for expensive tests that are very selective and cheap tests with low
selectivity, one has to find a trade—off.

Going back to Algorithm 2.8, step (2) is often replaced by a cheaper
criterion that only tests a necessary condition for canonicity, so-called
semi—canonicity. Without going into details this criterion only checks
for transpositions 7 if v < 7. For a more detailed description see
[33] or [34]. The full canonicity test will be delayed until the graph is
completed.

If some candidate solution then turns out not to be canonical, a so
called learning criterion provides a necessary condition for the canon-
icity of the lexicographic successors. The earliest extension step is
determined where non—minimality could have been detected in the
generation procedure. Applying this criterion will further prune the
generating tree. Details on this criterion can also be found in [33] and
[34].

2.2.5. From simple graphs to molecular graphs. Now that we have learnt
the principles of orderly generation, it is about time to adapt them to
molecular graphs. In contrast to simple graphs, edges of molecular
graphs have a bond multiplicity (or bond order). It is convenient to use
the lexicographical order on the adjacency matrix (or equivalently on
the connectivity stack) as construction sequence. Objects with max-
imal connectivity stack are defined as canonical orbit representatives.
This definition of canonicity is backward compatible in the following
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Ax(l)
Ax(z)
A =
Ax(r)
Ax(t)
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FIGURE 4. Adjacency matrix with block structure as
used in Algorithm 2.9

sense: a minimal simple graphs as defined in Subsection 2.2.2 has the
maximum connectivity stack in its orbit and vice versa.

Nodes of molecular graphs are colored by element symbols. Hydrogen
atoms are typically treated implicitly, i.e. they are not represented by
nodes, but instead each non—hydrogen atom has a hydrogen count as
attribute. Further attributes of atoms are the sum of remaining valen-
cies, i.e. those not bonded to hydrogen, charges and unpaired electrons.
These attributes impose invariants on the set of atoms. Additionally,
the bond order distribution of bonds incident with an atom can be used
as invariant.

The combination of these attributes defines the atom state. Before
starting to fill the adjacency matrix A, the atom states are assigned to
rows (and columns) of A. If the number of atoms of each state cannot
be deduced directly from the input, all possible distributions of atom
states are generated and filling the adjacency matrix is repeated for
each atom state distribution.

The assignment of atom states to rows and columns of the adjacency
matrix introduces a block structure as depicted in Figure 4. Each block
belongs to one of the t different atom types; A, equals the number of
atoms of a state r.

As a first gain of this block structure no longer all n! permutations of
the full symmetric group 5,, have to be checked during the canonicity
test. Only the HZZI A;! permutations that respect the block structure
have to be considered. This reduces the computational costs for canon-
icity testing immensely.
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Algorithm 2.9 is taken from [33] and shows how the structure genera-
tor underlying MOLGEN (short for MOLecular structure GENerator),
version 3.5 [35, 36| fills the adjacency matrix. Filling matrix blocks
(steps 3 and 4) is iterated with testing canonicity for matrix blocks
(step 5). For canonicity testing of block r only permutations from the
formerly calculated automorphism group Aut"~! of blocks 1,...,7r — 1
have to be taken into account.

Algorithm 2.9. MOLGEN Orderly Enumeration

(1) Start: set r := 0 and goto (3).

(2) Stop criterion: if r = 0 stop; else goto (4).

(3) Maximum filling: fill block A" (depending on AM .. A=)
in lexicographically mazimal manner so that A" fulfills the
desired matrix properties (regarding atom states and consistent
constraints).

If no such filling exists then set r := r — 1 and goto (2); else
goto (5).

(4) Next smaller filling: fill block A™) (depending on AM ... A(—1)
in lexicographically nezt smaller manner so that A fulfills the
desired matrix properties (regarding atom states and consistent
constraints).

If no such filling exists then set r := r — 1 and goto (2); else
goto (5).
(5) Test canonicity: if Vr € Aut=Y(A) : AT > A7 then
if r = ¢ (canonical matrix complete) then
(a) if constraints are fulfilled then output A
(b) goto (4)
else determine Aut™(A), set r :=r + 1 and goto (3).
else goto (4).

This algorithm uses two subroutines, the filling of a matrix block and
the canonicity test of a matrix block. Filling a matrix block is called in
two different situations: In Step (3) block A" is initially filled in maxi-
mal manner. When Step (4) is called, block A had already been filled
before, and now the next smaller filling is produced. Due to their huge
technical overhead, these subroutines will not be described in detail
here. The reader is referred to the original publication [33]. However,
this book comprises the principles of these subroutines. Canonical la-
beling has been introduced in Chapter 2. Filling a matrix block is done
in lexicographically descending order, which is similar to constructing
labeled graphs as introduced at the beginning of this subsection.

2.3. Beyond orderly generation. Of course, other principles can be
combined with orderly generation. For instance the above-mentioned
MOLGEN 3.5 allows definition of macroatoms. These are substructures
that are treated during orderly generation as a special atom type and
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are expanded whenever a canonical matrix is complete. Double coset
representatives are used to avoid isomorphic duplicates. This princi-
ple is already known from the construction of permutational isomers
and from the treatment of superatoms during tree generation in the
DENDRAL generator. In mathematics, this method of joining partial
structures without producing isomorphic duplicates is known as gluing
lemma [37, 38].

These two references [37, 38] also describe the principle of homomor-
phisms. A homomorphism is a simplification of a structure, which maps
isomorphic objects onto isomorphic simplified ones. The simplification
from molecular graphs to multigraphs by removing element symbols,
or from multigraphs to simple graphs by forgetting bond multiplici-
ties are examples of homomorphisms. Indeed, the DENDRAL strategy
already relied on these simplification steps, only the general principle
had not been worked out. In [39], this approach of simplifying by ho-
momorphisms has been pushed to an extreme by constructing graphs
with a prescribed degree sequence from regular graphs as the most
simple graphs. It turned out that for huge numbers of nodes n such
a generator is much faster than orderly generation only. However, for
small n, that still allow generation of full lists of graphs, the generator
accelerated by homomorphisms was not able to keep up with ordinary
orderly generation.

Another variation of orderly generation is also worth mentioning:
McKay’s enumeration by canonical construction path [40] restricts ex-
tensions to those structures where the new edges are taken from a
certain orbit of the automorphism group.

Speed plays an important role in structure enumeration, but only
few theoretical results about the computational complexity are known.
Goldberg’s work [41] proves that the results in orderly enumeration can
be computed with polynomial delay and a paper of Luks [42] shows that
isomorphism testing of molecular graphs can be done in polynomial
time.

A new approach named constrained generation [43] pays attention to
the fact that isomer generators in structure elucidation typically aim
at small numbers of solutions. For this reason, the ability to gener-
ate labeled structures that fulfill long lists of constraints becomes more
important than efficient isomorphism avoidance. This generator has
no fixed sequence of filling the adjacency matrix. Instead a heuristic
method has to decide which alternative makes best use of the actual
constraints. It only has to be guaranteed that each isomorphism type
is constructed at least once. Its canonical representation is then stored
in a hash table. If it is new, it will be written to the output, otherwise
it is a duplicate. Although giving up all the expertise from orderly gen-
eration, gluing lemma and homomorphism principle looks like a step
backwards, this approach, implemented in MOLGEN 4.0 [44] currently
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appears to be the best suited solution for application in structure elu-
cidation. It is being used in chemical and pharmaceutical companies
(where results typically are not disclosed to the public domain), as well
as in public research institutions (see for example [45]).

Of course not all generation algorithms and implementations can
be discussed in detail here. At least the most popular ones such as
CHEMICS [46], ASSEMBLE [47, 48], as well as [49, 50, 51] are worth
being cited. Number 27 of the journal MATCH is completely devoted to
this topic. Faulon’s review [14] also contains a large section about this
topic. Free online access to MOLGEN 3.5 and the new MOLGEN 5.0
are available at unimolis.uni-bayreuth.de/molgen and molgen.de,
respectively (accessibility checked January 2009).

3. ISOMER SAMPLING: STOCHASTIC STRUCTURE GENERATION

Due to the combinatorial explosion of numbers of constitutions with
increasing numbers of atoms, it is often impossible to generate all
molecular graphs belonging to a given molecular formula. Alterna-
tive methods are required, especially if no structural constraints are
available, for instance if statistical statements on structural or physico—
chemical properties of isomers of a certain molecular formula have to be
made. Sampling techniques help to tackle such problems. A frequent
requirement is a uniform probability distribution for all isomorphism

types.

3.1. Uniformly distributed random sampling. To explain the ba-
sic principle of uniformly distributed random sampling, we will again
start with simple graphs. Labeled simple graphs on n nodes can be
sampled with uniform distribution by simply choosing each pair of
nodes with probability 0.5 as an edge.

However, the different isomorphism types have different numbers
of labeled structures, thus other methods are required for uniformly
distributed random sampling for unlabeled structures. Dixon and Wilf
[52] solved the problem as follows.

Firstly, they choose a permutation at random from S, and next a
graph is constructed at random that is fixed by this permutation. The
details of this procedure are described below.

Algorithm 3.1. Sampling unlabeled graphs uniformly at random
(1) Select a permutation 7 € S,, at random.
(2) Compute 7* € S(n) corresponding to 7.
2
(3) For each cycle of 7m* select a boolean value at random.
(4) Output the graph composed by edges of cycles with value true.

The operation of S,, on the nodes of graphs induces an operation of
S(n) on the edges of graphs. 7* € S( ) in step (2) is defined as

n
2 2

™ ((0,4)) == (x(@), 7(4)) -
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This is the key to generate a random graph fixed by 7. A graph con-
structed this way is drawn randomly with uniform distribution from
all unlabeled graphs on n nodes.

Example 3.2. Unlabeled simple graphs on six nodes
Having selected 7 = [3 456 1 2] = (1 3 5)(2 4 6) at random, the
corresponding permutation in S< ) is

™ = ((1,2) (3,4) (5,6)) ((1,3) (3,5) (
((1,4) (3,6) (2,5)) ((1,6) (2,3) (
Random values true for the cycles
((1,2) (3,4) (5,6)) and ((1,6) (2,3) (4,5))
would lead to the graph with edgeset

{(1,2),(1,6),(2,3),(3,4),(4,5), (5,6)},
the cycle graph on six nodes.

[
t
S~—
S~—
—
~
nN
i
N—
—~~
s
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—~
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The Dixon-Wilf technique was later expanded by Wormald [53] to
sample regular graphs. An extension to molecular graphs with given
molecular formula was developed by Goldberg and Jerum [54]. Their
algorithm is a two—step procedure. First, a core structure that does
not contain vertices of degree one or two is sampled using a Dixon—
Wilf~-Wormald’s type algorithm. Then, the core is extended by adding
trees and chains of trees (vertices of degree one or two). This strategy
is similar to the processing in DENDRAL, where once cyclic substruc-
tures were generated, and connections representing the acyclic parts
are added afterward (see Subsection 2.1).

3.2. Monte Carlo and simulated annealing. Uniformly distributed
random sampling is appropriate to calculate average properties of com-
pounds from specific compound classes, but is rather time consuming
when used to search for the best compounds matching target proper-
ties or experimental data. In such an instance, optimization methods
such as Monte Carlo (MC) and simulated annealing (SA) or genetic
algorithms (GA) are more suitable.

Here, structures are optimized with respect to a certain target prop-
erty. Any mapping from the constitutional space onto real numbers
can be used as target property. Of course this mapping must be in-
variant with respect to atom numbering. Topological indices, group
contribution calculations or potential energy are prominent examples
used by Faulon in [55].

Algorithm 3.3 is extracted from [55] and outlines the principle of
MC/SA. In each annealing step a molecular graph, represented by its
adjacency matrix A, is given a small displacement in order to obtain a
new structure, represented by A’. If the new structure is better with
respect to the target property, it is accepted for the next annealing
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step. Otherwise it could still be accepted depending on a random
decision guided by a so-called annealing schedule. The coefficient kT
calculated in (g) is typically dependent on an initial coefficient, the
current step number and the total number of scheduled annealing steps.
Indeed the annealing schedule is the only difference between SA and
MC algorithms. This procedure is repeated until a given number of
annealing steps were carried out.

Algorithm 3.3. Simulated Annealing

(1) Generate an initial A using a deterministic technique.
(2) For each SA step
(a) Choose four distinct atoms 1, y1, 22, y2 randomly.
(b) Set A’ := Displacement (x1,y1,T2,Y2).
(c) If A’ does not meet the chemical constraints goto (a).
(d) Compute the cost function e(A’).
(e) Ac = e(A') — e(A).
(f) RN := random number between 0 and 1.
(g) Compute the coefficient kT according to the
annealing schedule.
(h) If Ae < 0 or RN < exp(—Ae/kT) then A := A’ and

Output A.
Subroutine Displacement (x1,y1, T2, Y2)
(1) Initialize A’ := A,
an = Az, 1), a2 = A(x1, ¥2),
agy = A(x2,y1), az2 = A(2,92).
(2) Choose by; # aq; at random so that
bll > HlaX(O, ajp — Q29,0411 + Q12 — 3, a11 + Q91 — 3) and
bin < min(3, a1 + a1z, a1y + ag1, a11 — as + 3).
(3) Set A/((El,yl) = bll;
Al(x1,y2) := a11 + a1z — bi1,
A'(z2,11) = a11 + a1 — biy,
A'(29,y2) 1= ag2 — arn + bi1.
(4) Return A’

The crucial step in this procedure is the random displacement, which
can be regarded as transformation of a molecular graph in such a way
that another isomer is obtained. Random displacements are imple-
mented by modifying bond orders [56]. This includes creation of bonds
in case a bond order is changed from zero to a positive value and dele-
tion of bonds if the bond order is set to zero during the modification.
Because isomers must have the same total number of bonds, when a
bond order is increased, another bond order must be decreased. Hence,
such a transformation implies the selection of at least two bonds, or
four atoms.

The bond order switch is described in subroutine Displacement of Al-
gorithm 3.3. Numbers of randomly selected atoms are parameter values
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FiGure 5. Examples of random displacements as used
in Monte Carlo and simulated annealing algorithms

for this subroutine. The inequations in Step (2) reflect the fact that
bond orders range from zero to three. The new bond orders assigned
in Step (3) maintain the atom’s valencies. In [55] it has been shown
by computer experiments that all possible constitutional isomers of a
given molecular formula can be reached using this bond order switch.

Example 3.4. Bond order switch

Figure 5 shows several examples of such random displacements. The
new bond orders assigned to (1, y;) are sketched by arrows labeled with
the change in the adjacency matrix. In the upper two bond switches a
bond between x; and y; is deleted and created in reverse direction. In
the third and fourth bond switch the bond order changes from two to
one and vice versa. The lower bond switch shows a change from triple
to double bond between x; and ;.

3.3. Genetic algorithms. Another type of stochastic structure gen-
erators are based on the technique of genetic algorithms (GA). Genetic
algorithms try to simulate principles from biological evolution, such
as inheritance, mutation, crossover (or recombination) and selection.
Except for recombination, these principles have already been used in
MC/SA algorithms. However, terminology is taken from biology’s evo-
lutionary theory.
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A fitness function serves for the selection of structures that fit a prob-
lem specific target property well. The connectivity stack can be used
as genetic code. The two types of structure manipulations, mutation
and recombination can be seen as operations on the genetic code. Mu-
tations can be defined like random displacements known from MC/SA.
Crossover involves two parent structures and at positions where their
genetic codes differ a random decision determines which parent’s infor-
mation should be passed to the child structure.

Algorithm 3.5 shows the construction of a new generation of struc-
tures as described in Meiler’s work [57, 58]. This study was devoted
to structure elucidation of small organic compounds by means of 3C
NMR spectra. The root—mean—square deviation between the experi-
mental chemical shifts and the predicted chemical shifts obtained by
an artificial neural network served as fitness function.

Algorithm 3.5. Genetic Algorithm (construction of a new generation)

(1) Set i:=0.
(2) While the number of populations i < n
(a) Set j:=0.

(b) While the number of molecules j < m
(i) Select first parent structure at random according to
a probability based on the fitness function.
(ii) If random decision for recombination is true then
Select second parent and perform recombination
else goto (iv).
(iii) If random decision for mutation is false then
goto (v).
(iv) Perform mutation.
(v) If molecule is new then increase j by 1.
(c) Calculate fitting values of the molecules of the child popu-
lation.
(d) Replace the [ worst molecules of the child population by
the [ best parents.
(e) Increase i by 1.

Each generation consists of a predefined number of populations n,
where each population comprises m molecules. In Step (i) the first
parent for recombination is chosen at random. The probability distri-
bution for this random selection is based on the values of the fitness
function in the parent population. This guarantees that better struc-
tures have higher probability to hand down their genetic information to
child structures. In the next step it is decided randomly if recombina-
tion or mutation should take place. In the case of recombination a sec-
ond parent is chosen, and the recombination is carried out. Otherwise
the parent structure is directly passed to mutation in Step (iv). After
recombination, the child structure can also still be subject to mutation,
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FiGURE 6. Example of a recombination as used in ge-
netic algorithms

again based on a random decision. After these structure manipulation
steps, fitting values of the child population are calculated. Step (d)
finally prevents loosing good solutions already obtained in the parent
population, via the user—parameter .

While mutation was already known from the previous subsection, re-
combination is a special feature of the GA. From the chemoinformatics
point of view it is interesting how this is applied to constitutional iso-
mers. For pairs of atoms (z;, y;) that have the same bond order in both
parent structures A and B, the child structure C' also obtains this bond
order for (x;,y;). If the bond orders differ in the parent structures, the
corresponding bond order in the child structure is selected randomly
from one of the parent structures.

Example 3.6. Recombination

Figure 6 depicts two parent structures A (left) and B (right) and a
resulting child structure C' (bottom). The parts contributed by the
parent structures are highlighted grey. However the process of recom-
bination can be better understood when looking at the genetic codes
of the involved structures. Remember, the genetic codes are the upper
left triangles of the adjacency matrices written in one row. The dif-
ferent rows of the adjacency matrices are separated by blanks in the
following representation:

A: 10000200 1000001 101000 10000 0000 000 10 O

L 1 !
C': 10000021 1000100 101000 10000 0000 000 00 O

T [
B: 10000021 0000100 111100 00000 0000 000 00 O
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We see that the genetic codes of the parent structures differ in ten
positions. Arrows mark the positions in the parent structures that
have to be changed in order to obtain the child structure.

But in contrast to the bond order switch introduced in Subsection
3.2 it could happen that the child structure is not necessarily chem-
ically valid. Structures have to be checked after recombination and
further bond orders might have to be changed. Another approach for
recombination, which avoids this deficiency, is proposed in [59].

The introduced MC/SA algorithm and the GA do not intend to
avoid isomorphic duplicates. However, since these algorithms typically
aim on producing small numbers of constitutions that fit the target
property well, they could easily be upgraded to avoid duplicates by
using a canonical labeling algorithm and a hash map.

4. BEYOND ISOMER ENUMERATION

Beyond generation of isomers, the methods described in the first two
sections of this chapter can be applied to generate extensive parts of
the chemical space or to count and construct combinatorial libraries.
In the following we outline the adaptations in algorithms required for
these purposes.

4.1. Virtual chemical space. There are several reasons to generate
large parts of the chemical space by means of computers. In [60, 61]
the authors generate and examine a virtual chemical space of small
molecules (up to 11 non-hydrogen atoms, elements C,H, N, O, F) with
respect to ring systems, stereochemistry, compound classes, physico—
chemical properties, as well as drug— and lead-likeness.

The algorithm starts with the construction of simple graphs, subse-
quently introduces multiple bonds and element symbols, and ends with
the generation of stereo isomers. More precisely the algorithm’s pseudo
code looks as follows:

Algorithm 4.1. Virtual chemical universe up to 11 atoms

(1) Generate all simple connected graphs on up to 11 vertices with
vertex valency up to 4 (corresponding to saturated hydrocar-
bons).

(2) Selection of graphs with moderate ring strain using topological
criteria and molecular mechanics that eliminate

(a) graphs containing one or more nodes in two small (three—
or four-membered) rings,

(b) graphs containing a ring system with a tetravalent bridge-
head in a small ring,

(c) all graph—theoretically non—planar graphs,

(d) graphs containing highly distorted centers not identified by
topology, but with an adapted MM2 force field.
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(3) Introduction of multiple bonds and elements C,H, N, O, F:

(a) Determine symmetry of the simple graphs.

(b) Introduce double and triple bonds combinatorially with re-
spect to symmetry in order to avoid duplicates. Bridgehead
double bonds, triple bonds in rings smaller than nine and
allenes are excluded as considered potentially problematic
for synthesis.

(c¢) Determine symmetry of the multigraphs.

(d) Introduce element symbols combinatorially with respect to
symmetry and under consideration of valency rules.

(4) Filtering for chemical stability, tautomeric and aromatic dupli-
cates:

(a) Structures with unstable functional groups are identified
by substructure search and removed.

(b) Tautomeric and aromatic duplicates are removed.

(5) Stereoisomer generation.

Step (1) was executed using GENG which is part of the freely avail-
able NAUTY system [40, 62]. This resulted in 843,335 simple, con-
nected graphs. The three topological selection steps (2) (a)—(c) re-
duced the number of graphs from 843,335 to 16,009, the molecular—
mechanics—-based procedure eliminated another 283 graphs leaving a
final set of 15,726 graphs. The introduction of multiple bonds in Step
(3) (a) and (b) resulted in 276,220 multigraphs, and the introduction
of element symbols in (3) (c) and (d) led to 1,720,329,902 molecular
graphs. For the symmetry perception in Steps (3) (a) and (c) an al-
gorithm described in [63] was used, which is based on the methods of
[64], but introduces additional atomic invariants. Note that we see two
typical applications of the homomorphism principle here. After remov-
ing unstable structures in Step (4) (a), 27,681,431 structures remained.
Keeping only the most probable tautomer in Step (4) (b) resulted in
26,434,571 structures. Stereo isomers in Step (5) were constructed by
an implementation of [65] and led to 110,979,507 configurations.

Another approach to generate molecular structures as SMILES has
been proposed in [66]. The software GENSMI is based on the commer-
cial toolkit of Daylight Chemical Information Systems, Inc. The aim
of this project was to provide structures for the search for new drug
candidates that involves virtual screening by evaluating protein-ligand
interactions.

A study to point out the discrepancy between compounds registered
in structural databases and the number of mathematically possible
compounds has been published in [67]. Mathematically possible com-
pounds consisting of C,H, N, O and having a mass < 150 Da were gen-
erated exhaustively and were compared with the Beilstein registry and
the NIST ’98 mass spectral library. As expected, it turned out that
the spectral library contains only a small fraction of the compounds
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in the Beilstein registry, which itself represents only an even smaller
fraction of the mathematically possible compounds (ratio 1:11:404976).
This result emphasizes the need for structure generation software in the
fields of structure elucidation and drug discovery.

The algorithm used for the generation of the chemical space in [67] is
mainly based on the structure generator MOLGEN 3.5 [35, 36] which
was fed with all possible molecular formulas:

Algorithm 4.2. Molecules in silico up to 150 Da

For each mass m between 1 and 150 do
for each graphical molecular formula f with mass m do

generate all molecular graphs with this molecular for-
mula f using MOLGEN.

The program run resulted in 1405 valid molecular formulas. In this
context a molecular formula is denoted being wvalid, if it belongs to at
least one connected molecular graph of an organic compounds (i.e. at
least one C), and where the involved elements appear with standard
valencies (4, 1, 3, 2 for C,H, N, O respectively). Structure generation
finally resulted in 3,699,858,517 non—-isomorphic molecular graphs. De-
tailed tables that list molecular formulas by mass and constitutions by
molecular formula, as well as the numbers of structures in the above
mentioned databases are included in [68].

4.2. Combinatorial libraries. During the past decades, combinato-
rial chemistry has become an appropriate method to synthesize huge
libraries of new compounds for biochemical screening. Especially with
the development of high throughput screening technology and better
bioassays, this method has gained much attraction in the drug devel-
opment workflow. In order to reduce costs it is useful to plan such
experiments using computer programs. Depending on the stage in the
drug discovery process, combinatorial chemistry experiments may fol-
low different strategies. In early stages, say during lead discovery, one
may want to produce libraries with a high structural diversity. In
later stages, for instance during lead optimization, pharmaceutical and
medicinal chemists are rather interested in focused libraries.

For any of these purposes it is useful to generate the library com-
pounds at first in silico, and apply appropriate tools in order to calcu-
late parameters representing diversity, or virtual screening methods in
order to optimize the experiment into a direction where most promising
hits can be expected.

4.2.1. Counting combinatorial libraries. Analogously to permutational
isomers we will at first show how to calculate sizes of combinatorial
libraries. Most combinatorial chemistry experiments can be reduced
to the situation where building blocks from a pool of substituents are
connected to a central molecule, a so-called core structure with n active
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sites. Even reactions with multiple reaction steps, as for instance Ugi’s
seven component reaction can be processed this way.

1025 If the core structure shows no symmetry with respect to the active
sites, the size of the library is simply the product [[}_, a;, where a;
denotes the numbers of possible substituents for active site i. How-
ever, if the central molecule shows symmetries, the situation is more
complicated. But it can be solved with the methods from Subsection

1030 1.1, as illustrated in the example below.

Example 4.3. Amidation of benzene trisacetylcychloride
As an example, we consider the exhaustive amidation of benzene trisacetyl-
cychloride as central molecule:

Cl

Cl

(0] Cl

Different amino acids are attached to this central molecule as shown
1035 below. An acyl chloride group reacts with an amino group in « position
to the carboxyl group:

0 o)
4 Cl H
H,N z N
Y + on — on + HC
o)
R o) R

Altogether there are m? possible attachments of m amino acid molecules
to the central molecule. But with respect to the central molecule’s au-
tomorphism group, the essentially different attachments are obtained

1040 as orbits of the operation of the automorphism group applied to the
set of m3 mappings.

We face a similar situation as in Subsection 1.1. The topological
automorphism group of the central molecule Dsp,, has six permutations,
the identity (1)(2)(3), three reflections (1 2)(3), (1 3)(2), (1)(2 3), and

1045 two rotations (1 2 3), (1 3 2). According to Equation 1.3 the number

of orbits is

1
|m?// Dsy| = 5 (m® 4+ 3m* 4 2m) .

For m = 20 amino acids this makes a library size of 1,540 compounds,
while ignoring symmetry would lead to 203 = 8,000 possible attach-
ments. As experienced earlier in Subsection 1.1, we can also apply
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Pélya’s Theorem. We obtain the cycle index
1
Z(Dan) = & (2% + 32120 + 223)

and for instance if we want to examine the situation of three different
amino acids as possible substituents, we replace z; by Zf’zl y¥ and
obtain

C(Ds,) = % (Z%) +<Zyi) (Z%Q)"‘Zyig

= y13 + y23 + y33 + y12y2 + y12y3
+ yiy® + Y2 ys + y1Ys” + Yays” + Yiyeys.

The coefficient of the monomial ;71,7237 gives the number of library
molecules where amino acid ¢ has been attached j; times. In this ex-
ample every monomial occurs with coefficient 1. Using this knowledge,
it is quite easy to construct all the library members by hand:
1 2 3 1 1
1/@1 2/@2 3/@3 2/@1 3/@1
1 2 1 2 1
2/@2 3/@2 3/@3 3/@3 3/@2
4.2.2. Generating combinatorial libraries. In general it is not possible
to construct library members directly from counting series. In order to
solve this problem we need to apply the relationship between permuta-
tional isomers and double cosets introduced in [8, 10]. It says that the

library members created from j; building blocks M, ..., j,, building
blocks M, are in one-to—one correspondence to the set of double cosets

G\ S,/S;, &.®S,,,

where G denotes the automorphism group of the central molecule and
Sny Sjis - ,5;,, the full symmetric groups of order n, ji,...,Jm, respec-
tively. One method to generate double cosets is using subgroup ladders
[69]. An implementation MOLGEN-COMB [70], which is specialized
to applications in combinatorial chemistry, uses orderly generation for
the construction of double cosets.

A completely different approach to generate combinatorial libraries
and reaction networks in general is to execute all possible reactions
using a backtracking strategy and to filter duplicate products using a
canonical labeling algorithm. [71] and [72] are just two references that
describe such an approach. Chapter 11 will discuss the generation of
reaction networks in more detail.



1080

1085

1090

1095

1100

1105

1110

1115

1120

32

MARKUS MERINGER

Many of the well known molecular modeling packages contain mod-
ules to generate combinatorial libraries, for instance CombiLibMaker
(package: SYBYL, company: Tripos), LibraryMaker (BenchWare, Tri-
pos), Analog Builder (Cerius?, Accelrys), Afferent (company: MDL)
or Structure Designer (ACD). For more detailed information on the
features of these tools the reader is referred to the product information
published by the various companies.

Acknowledgement. The author would like to thank Emma Schy-
manski for carefully proof-reading the manuscript.
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